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Critical behaviour of the Ising model along the coexistence curve 
and the critical isotherm 

D D Betts and C F S Chan 
Department of Phqsics. University of Alberta, Edmonton, Canada 

Received 1 October 1973 

Abstract. The basic low temperature series expansion data for the spin one-half lsing 
model on the hydrogen peroxide lattice are used to obtain series in 3 = exp( - 2 J  !,,jT) 
along the coexistence curve for the specific heat C,, the magnetization M ,  and its first five 
derivatives d' M !+pi, where p = exp( - 2 m H / k , T ) .  The same data are used to derive series 
in p along the critical isotherm for M and its first five derivatives c?'Mi8z'. Ratio and Pade 
approximant analysis yield estimates of the critical exponents and critical amplitudes. On 
the whole the estimates of the critical exponents support scaling theory although a few of 
the exponent estimates are not in good agreement with scaling. 

1. Introduction 

The spin Ising model is of great theoretical interest as one of the simplest models 
exhibiting a phase transition. Experimentally the king model represents reasonably 
well several real magnetic insulators (de Jongh and Miedema 1974), binary alloys (Als- 
Nielsen 1969) and classical fluids (Fisher 1967) in the critical region. For further informa- 
tion the reader may consult recent reviews (Domb 1960, Fisher 1967. Stephenson 1971. 
Domb 1974) and the book by Stanley (1971). 

In three dimensions no critical exponents are known exactly. The high temperature 
exponents 7 (Sykes et a1 1972a) and U (Sykes et a1 1972b) are now known to high precision, 
but the corresponding low temperature exponents 7'  and SI' have until recently not been 
very precisely estimated. Except for 6 (Gaunt and Sykes 1972) estimates of critical 
exponents along the critical isotherm have also suffered from lack of precision. Until 
recently the most extensive low temperature series expansion data have been those 
of Sykes et al (1965). These data have therefore provided the basis for studies of 
critical behaviour on the coexistence curve ( H  = 0, 7 < Tc) and the critical isotherm 
( T  = T,) (Essam and Hunter 1968, Guttmann et al 1970, Gaunt and Domb 1968, 
Gaunt 1967, Domb and Guttmann 1970, Gaunt and Domb 1970). As a result of these 
studies it had become clear that more low temperature series expansion data were 
required. 

Sykes et a1 (1973b) in the high field expansion of the dimensionless free energy, 

- F  
~ In A = Lr(z)pS, 
kBT S 

where z = exp( - 2J/k,T) and p = exp( - 2mH/kBT), have added L, ,  and L , ,  to the 
BCC lattice expansion, L,,  and L, ,  to the sc lattice expansion and, most notably, L,,, 
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L, ,  , L, ,  and L, ,  to the diamond lattice expansion. Simultaneously, Sykes et a1 (1973a) 
in the high exchange energy expansion ('temperature grouping') 

have extended the data to include $28 for the BCC lattice, IC12, for the sc lattice and $15  

for the diamond lattice. Meanwhile Betts et a1 (1974) have found all L, for s < 24 for 
the hydrogen peroxide lattice. 

Analysis of the new data for the other lattices along the coexistence curve and the 
critical isotherm has been performed by Gaunt and Sykes (1972, 1973). The present 
paper is concerned with analysis of the low temperature expansion data for the hydrogen 
peroxide lattice, In $ 2  we report the analysis by both ratio and Pade approximant 
methods of the series for the specific heat C,, and the magnetization 4, and its first 
five field derivatives a'.M/ap' all on the coexistence curve, H = 0 or p = 1 and T < T,. 
The most singular parts of these thermodynamic functions are supposed to diverge as 

and, letting M = dt'/Nm, 

Estimates of the critical exponents CO, y ;  and the critical amplitudes, A', C; are sought. 
Note that y b  = -/3 and y ;  = y' in the usual notation. 

In $ 3  we report the analysis, again by ratio and Pade approximant techniques, of the 
series for the magnetization and its first five exchange energy derivatives, a'M/az', 
all evaluated at the critical temperature. Now the most singular parts of a'M/az' are 
supposed to diverge as 

Note that 
In $ 4  the best estimates of 7 ;  and c f  are used to test exponent equalities of scaling 

theory. The critical amplitudes could also be used to test the lattice-lattice scaling theory 
relations among amplitude ratios (Betts et a1 1971) when values for the same amplitudes 
become available for other lattices. 

The coefficients of all series used in this investigation are listed in the appendix. 
These coefficients have been derived from the fundamental data obtained by Betts 
rt a1 (1974). 

= - 1/6 and E ,  = D-1'6 in the usual notation. 

2. Analysis of series along the coexistence curve 

Series for the spin one-half Ising model in z = exp( - 2J/k,T) and p = exp( - 2mH/kBT) 
for the specific heat at constant field C,(z,p) and the magnetization A ( z , p )  and its 
field derivatives a'&/dp' can be derived readily from the basic data for the expansion 
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of the free energy, F = - kTln A(z, p). In the case of the hydrogen peroxide lattice the 
high field expansion 

has been found recently (Betts et a1 1974) for all s d 23. The coefficients in the expansions 
along the coexistence curve ( p  = 1, z < zc) in 

and for the reduced magnetization per site, M = , l l i ” m ,  and derivatives in 

(2.2) 

(2 .3)  

are tabulated i n  the appendix. It can be shown that the L,(z) for s > 23 contain no 
powers of 2 lower than z18 so that the coefficients quoted are exact. 

To proceed with the analysis of the Ising model series in the low temperature (or high 
energy) variable z it is very helpful to hake an estimate of the critical point, zc.  Leu et 111 
(1969), from analysis of the high temperature expansion of the susceptibility, ha\e 
estimated cc from which one obtains zC = 0.317401 +0~000010 for the hydrogen peroxide 
lattice. 

A standard ratio plot is given in figure 1 for the derivative of the specific heat. 
(didz) [C,/Nk,(ln 4’1, the derivative of the magnetization, dM,ldz, and the suscepti- 
bility (zc?M/?p/, ,= all along the coexistence curve. Also included are lines whose 

Ti 
Figure 1. Ratio of coefficients aJa,_, against 1 ‘n for the following series for H = 0 :  
(d/dz)[C,,,”k,(ln z)’]  (A): ~ ( z )  (0) and dM,’dz (U). Corresponding asymptotes according 
to scaling theory exponent values for: (i) a ’+  1 = (broken line); 
(iii) 1 - p = 

(full line): (ii) y’ = 
(chain line). 
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slope is chosen to be that given by scaling theory for the three functions. According to 
scaling theory the above three functions should have critical exponents --'- 1 = -E ,  

settled down to their asymptotic behaviour. From figure 1 we obtain the almost useless 
estimates, 

p - 1 =  -II 16 and -7 '  = -2  respectively. It is clear that the ratios have not nearly 

X '  = 0.0 0.4, j = 0.3 If: 0.2 and 7' = 1.3 f0.2.  

To discover the specific heat exponent r ' ,  a number of series analysis techniques 
have been tried, none of which has been successful enough to improve noticeably the 
above estimate of 2'. This is consistent with the findings of Gaunt and Sykes (1973) 
for the low temperature specific heat series on the diamond lattice. The analysis of 
d'M/dp'lu= series have, however, been more successful. 

One technique of analysis is to calculate poles and residues of Pade approximants 
to (d/dz) ln(d'M/ap'l,= The poles give estimates of zc and the residues estimates of y;. 
A plot of y; against zc,  with a point for each Pade approximant, usually yields a smooth 
curve. The best estimate of y; is the ordinate on the curve corresponding to the abscissa 
equal to the 'true' critical point, zc = 0.317401. Such a plot for the susceptibility, 
p13A4/8p, is given in figure 2.  From figure 2 we estimate that y' = 1.30 +0.03. We have 
repeated the calculation and made the appropriate plot for I = 0, 1,2, . . . , 5  (Chan 1974). 
As a result we arrive at the estimates of y; given in table 1. The quoted errors in the 
estimates are no more than confidence limits based on inspection of the curves: our 
criteria can be judged from figure 2.  

A more elaborate technique also used is to find poles of Pade approximants to 
(~?M/?p'l,,= l ) l i i i  for a set of values of y ; .  Now each Pade approximant, [ N ,  D], yields a 
separate curve on a plot of zc ,  the pole of the Pade approximant, against 11;. Again that 
value of 7 ;  which best reproduces the known value of zc is regarded as the best estimate 
of the true value. 

Figure 2. Estimates of zc and y '  from poles and residues of Pade approximants to 
(d/dz) Ig x(z). 
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Table 1. Estimates of critical exponents yi from plots of residues against poles of Pade 
approximants to (d/dz) Ig(?'M/dfi'l,= ,). 

1 0 1 2 3 4 5 

y ;  -0.309_+0.002 1.30k0.03 2.8250.20 4.37k0.10 6 . 0 i 0 . 5  too scattered 

In practice most [ N ,  D] give nearly identical curves. Therefore, the graphical 
resolution is increased by plotting against y ;  not the individual estimates zc([N.  D ] )  
themselves but rather their differences, Az = z,([N, 01)- zo. from a best straight line, 
z,, = a/y;+b (Betts and Filipow 1972). Such a plot, again for I = 1, the susceptibility 
series, is illustrated in figure 3. From figure 3 we estimate y; = y' = 1.295 F0.005. 

All series 2iM/Jpilp=l for 1 = 0, 1 , .  . . , 5  have also been analysed in this second way. 
From the resulting plots of A z ( [ N , D ] )  against l /y;  we have obtained a second set of 
estimates of $. The results are summarized in table 2. Again the quoted errors are 
confidence limits: our criteria of confidence can be judged from figure 3. 

Figure 3. Deviations Az from a standard line z = a.;.' + h. of poles of Pad6 approximantb to 
( ~ ( z ) ) ' "  against I/? ' .  

Table 2. From Pade approximants to (d'AV,/dp'l,= estimates of critical exponents ,; 
from plots of Azc (see text) against 1 $ and critical amplitudes C;. from plots of residues 
against l/y;. 

I 0 1 2 3 4 5 
~- __ 

7; 0 . 3 1 0 ~ 0 ~ 0 0 3  1,295&0.010 2 8620.10 4.23i0.40 5.74+0.50 7.20k0.40 
c; + 1.81 + 0.223 - 0.265 +0.710 - 2.9 1 + 17.2 
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Having formed, by Pade approximant analysis, estimates for the critical exponents, 
it is also of interest to have estimates of critical amplitudes. Near zc on the coexistence 
curve the most singular part of B'M/Bp'J, = behaves as 

- y i  

where the z amplitude ci, is related to the T amplitude, C ; ,  of (1.4) by 

Estimates of C; are then obtained by plotting the residues of Pade approximants to 
(?'M,l?p''/L.= which correspond to -?C '(C;)l'.ii, against 7 ;  and choosing as best that 
residue corresponding to the best value of 7 ;  previously determined. The resulting 
estimates of C ;  are also given in table 2 with their confidence limits. 

Analysis of series expansions in lattice statistics is sometimes hampered by the 
presence of non-physical singularities. Such singularities are particularly troublesome 
if their location in the complex plane of the independent variable (the complex z plane 
here) is either (i) near to the physical singularity at zc or (ii) nearer to the origin than zc .  
Accordingly we have made estimates of the location of the important non-physical 
singularities in ?'Mii;z'l,= by finding all poles of central. high degree Pade approxi- 
mants to (did=)In(~'M/Sz'l,=,). The results are presented in table 3 in polar form. 

Table 3. Estimates of location of non-physical singularities. r exp io. of 2'MlSp'I ,=, in the 
complex z;zC plane from poles of Pade approximants to (did,-) ln(S'M/8p'lp = ,). 

1 1 0 1 - 3 4 5 

For all series studied ( I  < 5 )  there seems to be a complex conjugate pair of singularities 
making an angle of about 60" with the positive real axis and about the same distance 
from the origin as z c .  For I = 3, 4, 5 these non-physical singularities seem nearer to 
the origin than zc and may account for the greater error we must associate with our 
estimates of 7 ;  and 7 ;  in table 2. The negative real singularity in d5M/d,u51,= may 
also be causing trouble. 

Several methods exist for dealing with non-physical singularities (Gaunt and Gutt- 
mann 1974). Here we have applied the method of conformal transformation (Betts et a1 
1971 and references therein) in which a new independent variable is introduced in the 
series expansion via the relation 

m 

z = C b,Fk 
k =  1 

where m is the maximum degree of the known terms in the original series expansion 
In particular we have used here the expansion of 

(2.7) 
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which should be effective in removing far enough from the origin a singularity on the 
negative real axis such as found in d 5 M / d p s 1 , = , .  From poles of Pade approximants 
to the logarithmic derivative of the resulting transformed series we find y; = 7.0k0.4, 
whereas, as we saw in table 1, we were unable to estimate y; from the logarithmic deriva- 
tive of the untransformed series. Again from the second method, varying the powers, 
we find y; = 7.2 i 0.2, a slightly more precise estimate than that for y; in table 2. 

Another transformation has been sought which would ameliorate the effect of non- 
physical singularities at an angle of +60° to the real axis in the complex z plane. The 
transformation 

- - 
z = -  

1 - 27Z3 

has the effect on points of distance from the origin, / z /  = 3 ,  of moving points on the rays 
arg z = 0, 4-$n radially nearer to the origin while moving points on the rays arg z = z, 
i-3. radially farther from the origin. The hope is that (2.8) would be particularly 
helpful for 1 = 4 and 1 = 5. 

We have applied (2.8) to d'M/dp'I,=, for all 1 = 0,1,. . . , 5 .  We have then plotted 
residues against poles of Pade approximants to (d/dZ) ln(d'M/dp'I,, ,) to obtain 
if possible estimates improved over those of table 1. For 1 = 0,1,2 as expected and 
even for 1 = 3 little change in the estimates is observed. y k  becomes 5435+0.10, a 
distinct improvement in precision. However, the results for 1 = 5 are still too scattered 
to permit an estimate of 7;. 

Series for [(pd/ap)'M]I,=, have also been generated and analysed by the above 
technique (Chan 1974). The resulting estimates of critical properties are much less 
precise than those from 8'M/dp'lu, , and so are not reported here. 

3. Analysis of series along the critical isotherm 

The discussion in this section is quite analogous to that of 5 2. The critical isotherm is 
taken to be the line z = zc = 0.3 17401 in the (p, z) plane. From the basic configurational 
data (Betts et ul 1974), we have obtained series of degree 23 in p for ~ ' M / d ~ ' l , = , ~  for 
1 = 0, 1,. . . , 5 .  The coefficients are again quoted in the appendix, table 10. Note that 
the majority of coefficients depend on zc and so are quoted to only six figures. 

Our first estimates of the critical exponents cI  in 

are obtained from the logarithmic derivative. Poles against residues of Pade approxi- 
mants to (d/dp) ln(d'M/dz'lz,,c) are plotted to yield a curve from which cl is the ordinate 
corresponding to p = 1. The special case of 1 = 4 is illustrated.in figure 4. The remaining 
graphs will be found in Chan (1974). From these plots we arrive at estimates and con- 
fidence limits for cl as listed in table 4. The results for 1 = 3, however, are so scattered 
that no meaningful estimate of c3 can be made. 

Next we have found poles and residues of Pade approximants to ( 8 ' M / 8 ~ ~ ) ~ = ~ ~ ) ~ / ~ ~  
for a set of neighbouring values of cl near the best value as indicated in table 4. For each 
Pade approximant there is a curve of p c ,  from the pole, against c I .  The best value of c I  
then corresponds to pc  = 1. Actually, to increase the graphical resolution, we have 
again used the technique of plotting against cl not pc but Ap = pc -uq  - b, the deviation 
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Figure 4. Estimates of / i c  and cJ from poles and residues of Pade approximants to 
(d/dp) Idd4M(z, / ~ ) i d z ~ / ~ ~ ) .  

Table4. Estimates of critical exponents c, from plots of residues against poles of Pade 
approximants to (d dp)  ln(d'M,dz'lz=zc) for zc = 0 317401 

1 I O  1 3 4  5 

€ 1  0,193+0,007 0.491k0.010 0.959+0010 2 38 i. 0.05 2.85 i. 0.20 

from a standard line. Figure 5 illustrates the case of 1 = 4. From this and similar plots 
for other 1 values (Chan 1974), we obtain the estimates E, with their confidence limits as 
listed in table 5. According to this second method also the series for 1 = 3 is too badly 
behaved to yield an estimate of c 3 .  The magnetization series itself, M(z,, p ) ,  is also badly 
behaved. 

If residues of Pade approximants to (i?fM/i3zilzc)1'c1 are plotted against c1  we obtain 
estimates of the critical amplitudes E ,  of (1.5). The 'best' value for the residue, hence E , ,  
corresponds to the already determined best value of E,. Note that E,  = E,/2"t. These 
amplitude estimates are also displayed in table 5. 

To investigate further the cause of the misbehaviour for 1 = 0 and 1 = 3, we have 
found all the poles of high degree central Pade approximants to (d/dp) ln(2'M/&'lZc) for 
1 = 0, .  . . , 5 .  For all 1 except 1 = 5, we find a second real positive pole in the complex p 
plane. The poles and corresponding residues are given in table 6. No real non-physical 
singularity for 1 = 5 has been detected and those for 1 = 2 and 1 = 4 are sufficiently 
far out from the physical singularity at p = 1 as to do no harm. However, i33M!~z31zc 
seems to have a simple zero on the real p axis at p = 0.85, which is disastrous for the 
t The relation published by Betts and Filipow (1972) is incorrect. However they used the correct expression 
in their calculations so that the critical amplitudes listed in their table 3 are correct. 
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t 
I I I I 

-" 2'30 2 34 2 30 
€1 

Figure 5. Deviations Ap from a standard line, p = a<,+ b, of poles of Pade approximants to 
(? ,M(z ,  p ) , ~ ? z ~ ~ ~ ~ ) ' ' ' ~  against c 4 .  The straight line corresponds to p = 1. 

Table 5. From Pade approximnnts to (8M;3?lz=zc) ' , '~  estimates of critical exponents c, 

from plots of Ap (see text) against cl and critical amplitudes E ,  from plots of residues against 
€1. 

I 0 1 2 3 4 5 

€ 1  - 0,403 iO.010 0.97k0.02 - 2.35 k 0.04 2.93 i 0.07 
E ,  - - 1.06 - 2.47 - + 21.1 i 2 7 5  

Table 6. Estimates of real non-physical singularities p l ,  and exponents q1 from poles and 
residues of Pade approximants to (d/dp) In(d'M/dz'l,,). 

1 0 1 2 3 4 5 

1.13 1.12 1.60 0445 1.85 I 

0.035 0.125 - 
PI 
'I1 

- - 1.00 

analysis of the critical behaviour of the function at p = 1. The singularities for 1 = 0 
and 1 are also close enough to p = 1 to be troublesome. 

For singularities of the type encountered here, on the positive real axis near the 
physical singularity, transformation methods cannot help. Instead we have tried to 
'multiply out' the singularity. For example, instead of studying M(z,, p) we can study 

which should now have no competing non-physical singularity near p = 1. The multi- 
plying out technique seems particularly helpful in conjunction with the ratio method. 
In figure 6 we have plotted ratios of coefficients, anla,- against l/n for M(z,, p), for 
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Figure 6. Ratio of coefficients, aJa,-, against 1/11 for the following series: p(didLi)M(z,, p )  
(0) with zc = 0.317401 ; p(d/dp)M(zc+Az, p )  (A) with Az = 0.00010 and 

p(djdp) [( 1.1 3 - p)O’03’ M ( z , ,  p)] 

(U). The full line corresponds to p c  = 0.9971, the broken line corresponds to pc = 1.0000 
and 6 = 5.43. 

M(z,+Az, p )  where Az = 0.00010 and for M’(z,, p) as defined above. (Actually, to 
improve the graphical resolution we have applied the operator pd/dp to each of these 
three series.) 

The ratios for M ( z c ,  p )  seem to be getting nearly linear in l/n. However, the corre- 
sponding value of pc -= 0.9971 is seriously in error while the corresponding value of 
6 = - l / c  U 11 is completely implausible. Next, while the value of 0.31750 differs 
from the best high temperature estimate of zc by ten times the confidence limit, the 
corresponding ratio plot is but little different from that for the best zc. On the other 
hand, the ratios for A4’(zc, p)  have not only become quite linear, they yield the correct 
value of p c .  They also yield the plausible value of 6 = 5.4. 

Alternatively the behaviour found for the ratios may be indicative of a more com- 
plicated singularity than (3.1) at p = 1. There are a great variety of more complicated 
forms possible, all of which would involve one or more additional parameters which 
makes the possibilities for analysis quite open ended. We have not explored these 
avenues at this time. 

The ‘multiplying out’ technique seems less helpful to the Pade analysis. The series 
for I = 3 also seems beyond hope for any simple technique of analysis. 

4. Comparison with scaling theory predictions 

Scaling theory for critical phenomena (Widom 1965, Domb and Hunter 1965, Pata- 
shinskii and Pokrovskii 1966, Kadanoff 1966) makes the basic homogeneity hypothesis 
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for the magnetization, 

where t = ( T -  T,) T, and h = mH:k,T, and where in general $ is an unknown func- 
tion. fl  and A are basic critical exponents in terms of which the 7 ;  and the can be 
expressed. 

From the form (4.1) it is readily deduced that 

Si M 
S T' 

d'M 
S-.' 

__ 

or 

~ 

This means 

1- B 
€ 1  = A '  

(4.2) 

(4.3) 

Similarly it can be shown that 

yi = / A - B .  (4.4) 
The best established estimates of critical exponents for the s = Ising model are 

for the high temperature susceptibility exponent y (Sykes et a1 1972a) and for the high 
temperature specific heat exponent CL (Sykes et a1 1972b). In our test of scaling theory 
we shall assume CL = and 7 = exactly, as is strongly indicated by the investigations 
of the above authors. Then from the scaling relations 

f l  = l - + ( c x + y )  (4.5) 

A = l + i ( y - z )  (4.6) 

and 

and the relations (4.3) and (4.4) the scaling predictions for the c l  and ; s i  follow. 
Table 7 contains the scaling predictions for the c i  and y i  together with the best overall 

estimates of the same exponents from series analysis as gleaned from $5 2 and 3. The 

Table 7. Comparison of scaling theory predictions %ith best estimatm from series expan- 
sions for the king model critical exponents I of 2'lM PH'I,,, and cl of i ' 5 1  ST'l,_,c 

I 0 1 - 1 3 4 c; 

,'I - 0.3125 1.25 2.R125 4.375 5.9375 7.5 
(scaling) 

ir -0-30Yi0~002 1 -29Sk0~010  2.86$-0,10 4.37+0.10 5 . X 5 ~ 0 . 1 0  7.2k0.2 
(series) 
FI  - 0.2 0.44 1.08 1.72 2.36 3 
(scaling) 

(series) 
€ 1  -0 .193k0,007 0.492i.0.010 0.96*0,02 ~~ 2.36 F 0.04 2.93 + 0.07 
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series estimates include confidence limits which tend to increase with increasing I ,  
confirming the wisdom of limiting investigations to small I values. 

Examination of the y ;  values in table 7 reveals agreement, within confidence limits. 
with scaling predictions for 1 = 0,2 ,3 ,4  and 5. The notable exception is the case of the 
susceptibility exponent, 7; = 7’ for which the best series estimate is 4 “1; higher than the 
scaling prediction. 

In the only other presently available study (Gaunt and Sykes 1973) of low tempera- 
ture series expansions for the three-dimensional Ising model incorporating a similarly 
large amount of data (for the diamond lattice) a similar value of y’ seems to be indicated. 
However, as the authors point out, the estimates of y’ for diamond are rather scattered 
and no firm conclusions can be drawn. In the present case of the susceptibility series 
for the hydrogen peroxide lattice, the series seems better behaved and seems to yield an 
estimate of?‘ too high to agree with scaling. 

On the critical isotherm the best series estimates of the exponents cl  as given in table 7 
are in agreement with the scaling predictions for 1 = 0,4 and 5. For c3  no series estimate 
has been obtained. The series estimates of c 1  and c2 seem to be in disagreement with 
scaling unless our confidence limits are much too small. Gaunt and Sykes in unpublished 
work have also found such discrepancy for other lattices. In their investigations the 
series estimates for cI  agree better with the scaling results for higher coordination num- 
ber, the estimates for the diamond lattice (and, by inference, a fortiori for the hydrogen 
peroxide lattice) being slow to settle down to a value in good agreement with the scaling 
prediction. 

5. Summary and conclusion 

This paper has been concerned with the analysis of low temperature series expansions 
for the spin Ising model on the hydrogen peroxide lattice. Estimates of critical expon- 
ents and critical amplitudes have been obtained for the magnetization and its first five 
field derivatives on the coexistence curve and for the magnetization and its first five 
derivatives with respect to z = exp(-J/k,T) on the critical isotherm. The best overall 
estimates of both sets of critical exponents together with the corresponding scaling 
theory predictions have been given in table 7 .  

Along the coexistence curve all the critical exponents, y ;  ( I  = 0,2,3,4,  5),  are in good 
agreement with prediction based on taking cx = and y = $ and using scaling relations. 
Along the critical isotherm good agreement ofthe cl  estimates with prediction is obtained 
except for the critical exponents c 1  and c2 .  However, it was not possible to estimate c 3 .  

How does this situation compare with the situation in two dimensions? Recent 
estimates of y; for 1 2 2 based on recently extended low temperature series expansion 
data (Sykes et a1 1973d) are not available. (Of course E’,  fl  and y’ are known exactly.) 
However Betts and Filipow (1972) have studied the c1 on the critical isotherm for the 
honeycomb, square and triangular lattices, based on the data of Sykes et a1 (1973~). 
They found that c 0 ,  c2  and c 5  could be precisely estimated and that the estimates 
agreed well with scaling predictions. c 1  and c 3  could not be so precisely estimated and c4 

could not be estimated at all. The c l  estimates were in fair agreement with scaling 
theory while the c3 estimates were too high by an amount exceeding the confidence 
limits. 

Qualitatively then we see that the two-dimensional and three-dimensional situations 
are rather similar. Most exponent estimates agree well with scaling, a few do  not and a 
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few exponents cannot be estimated. Now in two dimensions a, y,  a', p and y' are all 
known exactly and satisfy scaling relations; no one seriously doubts the validity of 
scaling in two dimensions. But where the exponents must be estimated from series 
expansions, particularly on the critical isotherm, the evidence in favour of scaling is 
equally strong in two dimensions and in three dimensions (hydrogen peroxide lattice). 
Therefore we conclude that the present evidence supports thermodynamic scaling for 
the three-dimensional Ising model. Although we have not been able to obtain a direct 
estimate of the low temperature specific heat exponent, a', we hence tentatively conclude 
that N' = i. 

I here remain in three dimensions the troublesome exceptions on the coexistence 
curve of the susceptibility and on the critical isotherm of the first and second derivatives 
of the magnetization (in two dimensions the first and third derivatives). If scaling theory 
is indeed valid we must conclude that a few of the low temperature expansions are still 
too short to reveal the true asymptotic behaviour of the functions they represent, 
and the apparent confidence limits are too small. These conclusions are in qualitative 
agreement with those of Gaunt and Sykes (1973). 
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Appendix 

Table 8. Coefficients of the specific heat series, C,,/Nk,(ln 2)' = Z,a,z" on the coexistence 
curve. 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

I O  
1 1  
12 
1 3  
14 
15 
16 
17 

0 
0 
0 
9 

24 
75 

178 
441 

lo08 
2295 
5250 

I3068 
36576 

1 1  1033 
340746 

1015020 
2920032 
8261643 
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Table 9. Coefficients in the series expansions on the coexistence curve for 

a'M/apll,= 1 = - 2zJ.c;')zJ. 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
1.7 
14 
15 
16 
17 

- 0.5 
0 
U 
1 
3 
9 

24 
63 

162 
41 5 

1077 
2892 
8073 

23151 
67041 

193862 
558582 

1610073 

0 
0 
0 
1 
6 

27 
104 
369 

1242 
4039 

12978 
41 892 

136494 
446841 

1459590 
4737428 

15277500 
4907 I243 

0 
0 
0 
0 
6 

54 
328 

1638 
7290 

30056 
118770 
459024 

1749606 
6581550 

24399822 
8912591 4 

321297396 
1146225822 

0 
0 
0 
0 
0 

54 
672 

5238 
32400 

174024 
859968 

4028616 
18 158808 
79255710 

336086568 
I389067290 
5616301 896 

22297505670 

0 
0 
0 
0 
0 
0 

672 
10800 

I03680 
768240 

491 961 6 
28624536 

155382984 
798024240 

3Y12915384 
18448456560 
84165825384 

37357751 3976 

0 
0 
U 
0 
0 
0 
0 

10800 
213840 

2449920 
21 663360 

162932040 
1094811600 
6748932240 

38830791600 
211 173474720 

1096344816480 
54766461 32280 

Table 10. Coefficients of d'M/dz'lZc = Z, dt'p" for zc = 0.317401 

0 1 
1 - 0.0639524 
2 -0.0527159 
3 -0.0417026 
4 -0.0334756 
5 -0.0274116 
6 -0,0228616 
7 -0.0193713 
8 -0,0166371 
9 -0 .o ia547 

10 -0.0127914 
11 - 0.01 14881 
12 -0.0104273 
13  - 0,00953663 
14 - 0.00877872 
15 -0,00812313 
16 - U.00754964 
17 - 0,00704498 
18 - 0,00659960 
1 9 - U406204 13 
20 - 0,00585053 
2 1 - O405S3246 
22 - 0,00524492 
23 - 0,00498373 

0 
- 0.604462 
- 0.61 2801 
-0,562168 
- 0,507041 
- 0,457447 
-0.414762 
- 0,378373 
- 0,347293 
- 0.320589 
- 0.300 104 
-0,283831 
-0.270145 
- 0,258120 
- 0,247452 
-0.237808 
- 0,2290 13 
- 0,220997 
- 0.21 3722 
- 0.207088 
- 0.200995 
-0,195367 
- 0,190148 
- 0.1 85288 

0 
- 3.80882 
- 4.81 771 
- 5.09322 
- 5,10493 
- 5,01673 
- 4,89428 
- 4,76538 
- 4.641 81 
-4.52816 
- 4.47641 
- 4.45656 
- 4.44549 
- 4.43294 
- 4.42022 
- 4,405 15 
-4.38855 
- 4,37283 
- 4,36002 
- 4.34948 
- 4,34020 
- 4.33177 
- 4,32403 
- 4.3 1675 

0 
- 12 
- 15.0087 
- 13.2927 
- 9.51 146 
- 5.00340 
- 0,433923 

3.8721 1 
7,76505 

11.1866 
13,4903 
15.4096 
17.3700 
19.4955 
21,6997 
23.995 1 
26.3212 
28.5986 
30.7826 
32,9070 
35.0038 
37,0826 
39.1452 
41.1957 

0 
0 

146,142 
394.675 
7 10.037 

1067.94 
1452.43 
1852.96 
2262.50 
2676.26 
3090.75 
3522.25 
3976.47 
4452.03 
4944.82 
5453.16 
5973.90 
6504.46 
7044.06 
7593.90 
8154.52 
8725.68 
9306.96 
9898.00 

0 
0 

1828.23 
5717.82 

11 520.0 
19052.4 
28168.5 
38763.4 
50766.1 
64 128.6 
79020.8 
95805.4 

114535 
135106 
157410 
181387 
206956 
234084 
262803 
2931 74 
325217 
358920 
394272 
43 1262 
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